Indian Journal of Medical Biochemistry

Register      Login

VOLUME 25 , ISSUE 3 ( September-December, 2021 ) > List of Articles


Ratio of Serum Superoxide Dismutase and Whole Blood Glutathione Peroxidase: A Noteworthy Parameter for Tuberculosis Diagnosis

Keywords : Extrapulmonary tuberculosis, Hydrogen peroxide, Myeloperoxidase, Oxidative burst, Pulmonary tuberculosis, Siderophores, Superoxide, Thiol cofactor, Transferrin

Citation Information : Ratio of Serum Superoxide Dismutase and Whole Blood Glutathione Peroxidase: A Noteworthy Parameter for Tuberculosis Diagnosis. Indian J Med Biochem 2021; 25 (3):100-104.

DOI: 10.5005/jp-journals-10054-0193

License: CC BY-NC 4.0

Published Online: 11-03-2022

Copyright Statement:  Copyright © 2021; The Author(s).


Aim and background: Mycobacterium tuberculosis secretes extracellularly abundant amount of two proteins superoxide dismutase (SOD) and glutamine synthetase (GS) having no leader sequences. The pathogenesis of M. tuberculosis is contributed by the secretion of iron-cofactored SOD which scavenges reactive oxygen intermediates (ROI) by dismutation reaction and also blocks activation of NF-kB and mononuclear cell apoptosis. The obligatory aerobe catalase-positive M. tuberculosis also secretes selenoenzyme glutathione peroxidase (GPx) catalyzing reduction of peroxides produced by dismutation reaction at the expense of reduced glutathione. In this study, the author has computed the statistical ratio of serum SOD and whole blood GPx level and mulled to use that as a diagnostic marker for tuberculosis (TB) and to monitor the effectiveness of drug therapy. Materials and methods: The participants were divided into three groups: Normal control; 2-Lung disease control and 3-TB patients (3A-pulmonary and 3B-extrapulmonary). The serum SOD and whole blood GPx activity were measured spectrophotometrically for all participants initially. Both of these parameters were assayed again after 1 month's usual additional treatment for groups II and III. Results: The ratio as calculated in TB patients is >9 and 8 times, respectively, than those of normal and lung disease control subjects. With anti-TB drug therapy for 1 month, there was a significant decrease in the ratio. Conclusion: The higher magnitude of the ratio might be well utilized to diagnose TB, the serial measurement of the said ratio during the course of A-TB drug treatment might confer effectiveness of drug therapy and diagnose drug-resistant cases.

  1. World Health Organization. Global Tuberculosis Report. Geneva: World Health Organization; 2020. Licence CCBY-NC-SA3.01GO.
  2. Tullius MV, Harth G, Horwitz MA. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism. Infect Immunity 2001;69(10):6348–6363. DOI: 10.1128/IAI.69.10.6348-6363.2001.
  3. Tullius MV, Harth G, Horwitz MA. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in hunan THP-1 macrophages and guineapigs. Infect Immunity 2003;71(7):3927–3936. DOI: 10.1128/IAI.71.7.3927-3936.2003.
  4. Chattopadhyay DK. Serum glutamine synthetase activity as biomarker for tuberculosis diagnosis and monitoring anti-tubercular drug therapy success. Indian J Biochem Biophys 2019;56:427–432.
  5. Chattopadhyay DK. Superoxide dismutase: a biomarker for diagnosis of tuberculosis. J Clin Diagn Res 2019;13(7):BC01–BC03.
  6. Chattopadhyay DK. Decreased serum cholinesterase activity-a reliable diagnostic aid for tuberculosis. J Clin Diagn Res 2021;15(3):BC16–BC19.
  7. Hirschfield GR, McNeil M, Brennan PJ. Peptidoglycan-associated polypeptide Mycobacterium tuberculosis. J Bacteriol 1990;172(2):1005–1013. DOI: 10.1128/jb.172.2.1005-1013.1990.
  8. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685):537–544. DOI: 10.1038/31159.
  9. Agoro R, Mura C. Iron supplementation therapy, a friend and foe of mycobacterial infections? Pharmaceuticals 2019;12(2):75. DOI: 10.3390/ph12020075.
  10. Babior BM, Kipness RS, Curnutte JT. Biological defense mechanisms. The production by leucocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973;52(3):741–744. DOI: 10.1172/JCI107236.
  11. Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation and beyond. J Exp Med 2013;210(7):1283–1299. DOI: 10.1084/jem.20122220.
  12. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidase: physiology and pathophysiology. Physiolog Rev 2007;87(1):245–313. DOI: 10.1152/physrev.00044.2005.
  13. Wild I, Seaman T, Hoal EG, et al. Total antioxidant levels are low during active TB and rise with anti-tuberculosis therapy. IUBMB Life 2004;56(2):101–106. DOI: 10.1080/15216540410001671259.
  14. Nag D, Chattopadhyay D, Maity CR. Superoxide dismutase and glutathione peroxidase in the pathogenesis of Mycobacterium tuberculosis & the effect of zinc supplementation. Ind Med Gaz 2009;CXLIII(1):1–6.
  15. Mendoza-Aguilar MD, Arce-Paredes P, Aquino-Vega M, et al. Fate of Mycobacterium tuberculosis in peroxidase loaded resting murine macrophages. Int J Mycobacteriol 2013;2(1):3–13. DOI: 10.1016/j.ijmyco.2012.11.002.
  16. SrinivasaRao PS, Yamada Y, Leung KY. A major catalase(KatB) that is required for resistance to H2O2 and phagocyte mediated killing in Edwardsiella tarda. Microbiology 2003;149(9):2635–2644. DOI: 10.1099/mic.0.26478-0.
  17. Chan J, Xing Y, Magliozzo RS, et al. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 1992;175(4):1111–1122. DOI: 10.1084/jem.175.4.1111.
  18. Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorganic Chem 1985;24(22):3502–3504. DOI: 10.1021/ic00216a003.
  19. Wayne LG, Diaz GA. Serological, taxonomic, and kinetics studies of the T and M classes of mycobacterial catalase. Int J Syst Bacteriol 1982;32(3):296–304. DOI: 10.1099/00207713-32-3-296.
  20. Wilson TM, Collins DM. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol Microbiol 1996;19(5):1025–1034. DOI: 10.1046/j.1365-2958.1996.449980.x.
  21. Brigelius-Flohe R. Tissue specific functions of individual glutathione peroxidases. Free Radic Biol Med 1999;27(9-10):951–965. DOI: 10.1016/s0891-5849(99)00173-2.
  22. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994;344(8925):793–795. DOI: 10.1016/s0140-6736(94)92346-9.
  23. Dalvi SM, Patil VW, Ramraje NM. The roles of glutathione, glutathione peroxidase, glutathione reductase and the carbonyl protein in pulmonary and extra-pulmonary tuberculosis. J Clin Diagn Res 2012;6(9):1462–1465. DOI: 10.7860/JCDR/2012/4410.2533.
  24. Sedighi O, Makhlough A, Shokrzadeh M, et al. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephro-Urology Monthly 2014;6(5):e21355. DOI: 10.5812/numonthly.21355.
  25. Woolliams JA, Weiner G, Anderson PH, et al. Variation in the activities of glutathione peroxidase and superoxide dismutase and in the concentration of copper in the blood in various breed crosses of sheep. Res Vet Sci 1983;34(3):253–256. DOI: 10.1016/S0034-5288(18)32219-7.
  26. Paglia DE, Valentine WN. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70(1):158–169.
  27. Harth G, Horwitz MA. Export of recombinant Mycobacterium tuberculosis superoxide dismutase is dependent upon both information in the protein and mycobacterial export machinery. A model for studying export of leaderless proteins by pathogenic mycobacteria. J Biol Chem 1999;274(7):4281–4292. DOI: 10.1074/jbc.274.7.4281.
  28. Olakanmi O, Schlesinger LS, Ahmed A, et al. Intra phagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-gamma and hemochromatosis. J Biol Chem 2002;277(51):49727–49734. DOI: 10.1074/jbc.M209768200.
  29. Rodriguez GM. Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol 2006;14(7):320–327. DOI: 10.1016/j.tim.2006.05.006.
  30. Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 1995;270(45):26723–26726. DOI: 10.1074/jbc.270.45.26723.
  31. Jones CM, Wells RM, Madduri AVR, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. PNAS. 2014;111(5):1945–1950. DOI: 10.1073/pnas.1311402111.
  32. Heym B, Zhang Y, Poulet S, et al. Characterization of the KatG gene encoding a catalase peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 1993;175(13):4255–4259. DOI: 10.1128/jb.175.13.4255-4259.1993.
  33. Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 2010;43(11):1408–1419. DOI: 10.1021/ar100059g.
  34. Beyer W, Imlay J, Fridovich I. Superoxide dismutase. Prog Nucleic Acid Res Mol Biol 1991;40:221–253. DOI: 10.1016/s0079-6603(08) 60843-0.
  35. Allen M, Bailey C, Cahatol I, et al. Mechanisms of control of Mycobacterium tuberculosis by NK cells: role of glutathione. Front Immunol 2015;6:508. DOI: 10.3389/fimmu.2015.00508.
  36. Lagman M, Ly J, Saing T, et al. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS ONE 2015;10(3):e0118436. DOI: 10.1371/journal.pone.0118436.
  37. Venketaraman V, Millman A, Salman M, et al. Glutathione levels and immune responses in tuberculosis. Microb Pathog 2008;44(3):255–261. DOI: 10.1016/j.micpath.2007.09.002.
  38. Shastri MD, Shukla SD, Chong WC, et al. Role of oxidative stress in the Pathology and management of human tuberculosis. Oxid Med Cell Longev 2018. 7695364. DOI: 10.1155/2018/7695364.
  39. Manca C, Paul S, Barry CE. III, et al. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 1999;67(1):74–79. DOI: 10.1128/IAI.67.1.74-79.1999.
  40. Maurya PK, Kumar P, Siddique N, et al. Age-associated changes in erythrocyte glutathione peroxidase activity: correlation with total antioxidant potential. Indian J Biochem Biophys 2010;47(5):319–321.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.