Indian Journal of Medical Biochemistry

Register      Login

VOLUME 26 , ISSUE 1 ( January-April, 2022 ) > List of Articles


Zinc Supplementation Combats Tuberculosis by Reverting Back to Normal Compartmentalized State of Iron and Hence Increasing Blood Hemoglobin Concentration

Dipak Kumar Chattopadhyay

Keywords : Antioxidant, Decompartmentalization, Dismutation, Iron, Siderophore, Superoxide, Tuberculosis, Thiol group, Transferrin, Zinc

Citation Information : Chattopadhyay DK. Zinc Supplementation Combats Tuberculosis by Reverting Back to Normal Compartmentalized State of Iron and Hence Increasing Blood Hemoglobin Concentration. Indian J Med Biochem 2022; 26 (1):20-25.

DOI: 10.5005/jp-journals-10054-0203

License: CC BY-NC 4.0

Published Online: 03-01-2023

Copyright Statement:  Copyright © 2022; The Author(s).


Aim and background: To acquire iron (Fe), Mycobacterium tuberculosis (Mtb) expresses high-affinity Fe+3-specific siderophores for scavenging Fe from host insoluble and protein-bound iron-like transferrin, lactoferrin, ferritin, and hemoglobin−haptoglobin. Mycobacterium tuberculosis by its specific membrane protein and Fe transporters can internalize Fe within cell cytoplasm. With infection by Mtb, activity of transferrin, the most dynamic Fe carrier gets setback with a decrease in its level due to infection and also by a decrease in its ability to leave out Fe in bone marrow cells through specific cell surface transferrin receptors. Thus, major decompartmentalization of Fe in host tissues sets in. Zinc (Zn), a redox-inert metal, acts as an antioxidant by stabilizing membrane structures, upregulating expression of metallothionein, protecting protein sulfhydryl group, and suppressing the formation of superoxides by competing with Fe and copper in the cell membrane and thiol group binding. The study interprets the effect of Zn supplementation on serum Fe and hemoglobin (Hb) percentage for tuberculosis (TB) patients. Materials and methods: Serum Fe and blood Hb percentage were measured initially for TB patients. The same parameters were also assayed with continuation of anti-TB drugs for 1 month with or without Zn supplementation. Results: Assertive and veritable increase in baseline serum Fe in TB patients had been recorded in this study. The same TB patients with anti-TB drugs for 1 month had recorded nonsignificant serum Fe and Hb percentage increase, whereas oral zinc supplementation with anti-TB drugs for 1 month had shown significant increase in serum Fe and Hb percentage. Conclusion: Zinc hastens the process of normal compartmentalized state of Fe depriving Mtb to get Fe and superoxide required for dismutation reaction to get soluble oxygen for this obligate aerobe.

  1. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685):537−544. DOI: 10.1038/31159.
  2. Anderson NC. Iron homeostasis: Insights from genetics and animal models. Nat Rev Genet 2000;1(3):208−217. DOI: 10.1038/35042073.
  3. Rodriguez GM. Control of iron metabolism in Mycobacterium tuberculosis. Trends in Microbiol 2006;14(7):320−327. DOI: 10.1016/j.tim.2006.05.006.
  4. Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis 2004;84(1−2):110−130. DOI: 10.1016/
  5. Gobin J, Horwitz MA. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 1996;183(4):1527−1532. DOI: 10.1084/jem.183.4.1527.
  6. Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2013;9(1):e1003120. DOI: 10.1371/journal.ppat.1003120.
  7. Ryndak MB, Wang S, Smith I, et al. The Mycobacterium tuberculosis high-affinity iron importer, Irt A, contains an FAD-binding domain. J Bacteriol 2010;192(3):861−869. DOI: 10.1128/JB.00223-09.
  8. Reddy PV, Puri RV, Khera A, et al. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection. J Bacteriol 2012;194(3):567−575. DOI: 10.1128/JB.05553-11.
  9. Cronje L, Edmondson N, Eisenach KD, et al. Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. FEMS Immunol Med Microbiol 2005;45(2):103−112. DOI: 10.1016/j.femsim.2005.02.007.
  10. De Voss JJ, Rutter K, Schroeder BG, et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad USA 2000;97(3):1252−1257. DOI: 10.1073/pnas.97.3.1252.
  11. Rodriguez GM, Voskuil MI, Gold B, et al. ideR, an essential gene in Mycobacterium tuberculosis: Role of IdeR in iron-dependent gene expression, iron metabolism and oxidative stress response. Infect Immun 2002;70(7):3371−3381. DOI: 10.1128/IAI.70.7.3371-3381.2002.
  12. Sritharan M. Iron homeostasis in Mycobacterium tuberculosis: Mechanistic insights into siderophore-mediated iron uptake. J Bacteriol 2016;198(18):2399−2409. DOI: 10.1128/JB.00359-16.
  13. Hamilton TA, Gray PW, Adams DO. Expression of transferrin receptor on murine peritoneal macrophages is modulated by in vitro treatment with interferon gamma. Cell Immunol 1984;89(2):478−488. DOI: 10.1016/0008-8749(84)90348-4.
  14. Mendoza-Aguilar MD, Arce-Paredes P, Aquino-Vega M, et al. Fate of Mycobacterium tuberculosis in peroxidise-loaded resting murine macrophages. Int J Mycobacteriol 2013;2(1):3−13. DOI: 10.1016/j.ijmyco.2012.11.002.
  15. Chattopadhyay DK. Serum glutamine synthetase activity as biomarker for tuberculosis diagnosis and monitoring anti-tubercular drug therapy success. Indian J Biochem Biophys 2019;56(6):427−432. DOI: 10.56042/ijbb.v56i6.29214.
  16. Chattopadhyay DK. Superoxide dismutase: A biomarker for early diagnosis of tuberculosis. J Clin Diagn Res 2019;13(7):BC01−BC03. DOI: 10.7860/JCDR/2019/35298.12968.
  17. Chattopadhyay DK. Decreased serum cholinesterase activity − A reliable diagnostic aid for tuberculosis. J Clin Diagn Res 2021;15(3):BC16−BC19. DOI: 10.7860/JCDR/2021/46501.14657.
  18. Chattopadhyay DK. Ratio of serum superoxide dismutase and whole blood glutathione peroxidase: A noteworthy parameter for tuberculosis diagnosis. Indian J Med Biochem 2021;25(3):100−104. DOI: 10.5005/jp-journals-10054-0193.
  19. Chattopadhyay DK, Maity CR, Nag D. Effect of zinc supplementation on mycospecific immunoglobulins in tuberculosis patients. J Indian Med Assoc 2010;108(2):92−93. PMID: 20839565.
  20. International Committee for Standardization in Haematology (Expert Panel on Iron). Revised recommendation for the measurement of serum iron in human blood. Br J Haematol 1990;75(4):615−616. DOI: 10.1111/j.1365-2141.1990.tb07808.x.
  21. Balasubramanian P, Malathi A. Comparative study of haemoglobin estimated by Drabkin's and Sahli's methods. J Postgraduate Med 1992;38(1):8−9. PMID: 1512732.
  22. Jones CM, Niederweis M. Mycobacterium tuberculosis can utilize heme as an iron source. J Bacteriol 2011;193(7):1767−1770. DOI: 10.1128/JB.01312-10.
  23. Tullius MV, Nava S, Horwitz MA. PPE 37 is essential for Mycobacterium tuberculosis heme-iron acquisition (HIA) and a defective PPE 37 in Mycobacterium bovis BCG prevents HIA. Infect Immun 2019;87(2): e00540-18. DOI: 10.1128/IAI.00540-18.
  24. Mitra A, Speer A, Lin K, et al. PPE surface proteins are required for heme utilization for Mycobacterium tuberculosis. mBio 2017;8(1):e01720. DOI: 10.1128/mBio.01720-16.
  25. Jones CM, Wells RM, Madduri AY, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci USA 2014;111(5):1945−1950. DOI: 10.1073/pnas.1311402111.
  26. Mwandumba HC, Russel DG, Nyirenda MH, et al. Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV Infection. J Immunol 2004;172(7):4592−4598. DOI: 10.4049/jimmunol.172.7.4592.
  27. MacGillivary RT, Moore SA, Chen J, et al. Two high-resolution crystal structures of the recombinant N-lobe of human transferrin reveal a structural change implicated in iron release. Biochemistry 1998;37(22):7919−7928. DOI: 10.1021/bi980355j.
  28. Chattopadhyay DK, Nag D. Efficacy of zinc supplementation as an adjunct to anti-tubercular drug therapy. Ind Med Gaz 2014; CXLVIII:21−24.
  29. Kraemer SM. Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 2004;66:3−18. DOI: 10.1007/s00027-003-0690-5.
  30. Searle AJF, Tomsai A. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc. J Inorg Biochem 1982;17(2):161−166. DOI: 10.1016/S0162-0134(00)80085-9.
  31. Dow A, Sule P, O'Donnell TJ. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog 2021; 17(5):e1009570. DOI: 10.1371/journal.ppat.1009570.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.