Indian Journal of Medical Biochemistry

Register      Login

VOLUME 28 , ISSUE 1 ( January-April, 2024 ) > List of Articles


Metformin: A Potential Drug for COVID-19

Anjali Devi Bettadapura Shankara Rao, Sujatha Puttalingaiah, Ananth B Koushik, Jadeppa Gowda

Keywords : Adenosine monophosphate kinase, Angiotensin-converting enzyme 2, Coronavirus disease-2019, Mammalian target of rapamycin, Metformin, Severe acute respiratory syndrome

Citation Information : Rao AD, Puttalingaiah S, Koushik AB, Gowda J. Metformin: A Potential Drug for COVID-19. Indian J Med Biochem 2024; 28 (1):25-29.

DOI: 10.5005/jp-journals-10054-0230

License: CC BY-NC 4.0

Published Online: 20-04-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Metformin is an old drug, of plant origin, primarily used in the treatment of type 2 diabetes. The main mechanism of its action is mediated through adenosine monophosphate (AMP) kinase. Though the main action of metformin is to inhibit hepatic gluconeogenesis, it is also known to increase insulin sensitivity and is used in the treatment of obesity and polycystic ovarian disease. Its varied actions on coronavirus infections, by inhibiting virus entry, preventing cytokine storm, boosting immunity by altering the gut microbiota, and decreasing virulence by inducing autophagy makes it an ideal candidate for treating coronavirus disease-2019 (COVID-19). The only serious side effect of metformin is lactic acidosis, confined to a few patients. The drug is already approved by the US Food and Drug Administration (FDA) and thus repurposing it in COVID-19 patients may be beneficial. Metformin is a drug, approved by FDA for treating diabetes mellitus with very few side effects. It is inexpensive and is known to exhibit anti-COVID-19 actions. It has also proven to be effective in treating PCOS and obesity. Thus, it has all the potential to treat COVID-19.

PDF Share
  1. Hadden DR. Goat's rue – French lilac – Italian fitch – Spanish sainfoin: Gallega officinalis and metformin: The Edinburgh connection. J R Coll Physicians Edinb 2005;35(3):258–260. PMID: 16402501.
  2. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011;50(2):81–98. DOI: 10.2165/11534750-000000000-00000.
  3. Curd FHS, Rose FL. Synthetic antimalarials; some aryl-diguanide (“-biguanide”) derivatives. J Chem Soc 1946;729–737. PMID: 20282443.
  4. Rubiño MEG, Carrillo E, Alcalá GR, et al. Phenformin as an anticancer agent: Challenges and prospects. Int J Mol Sci 2019;20(13):3316. DOI: 10.3390/ijms20133316.
  5. Sterne J. Blood sugar-lowering effect of 1,1-dimethylbiguanide. Therapie 1958;13(4):650–659. PMID: 13603402.
  6. Bailey CJ, Turner RC. Metformin. Wood AJJ, editor. N Engl J Med 1996;334(9):574–579. DOI: 10.1056/NEJM199602293340906.
  7. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood–glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352(9131):854–865. PMID: 9742977.
  8. Yerevanian A, Soukas AA. Metformin: Mechanisms in human obesity and weight loss. Curr Obes Rep 2019;8(2):156–164. DOI: 10.1007/s13679-019-00335-3.
  9. Coyle C, Cafferty FH, Vale C, et al. Metformin as an adjuvant treatment for cancer: A systematic review and meta-analysis. Ann Oncol 2016;27(12):2184–2195. DOI: 10.1093/annonc/mdw410.
  10. Parsanezhad ME, Alborzi S, Zarei A, et al. Insulin resistance in clomiphene responders and non-responders with polycystic ovarian disease and therapeutic effects of metformin. Int J Gynaecol Obstet 2001;75(1):43–50. DOI: 10.1016/s0020-7292(01)00470-2.
  11. Luo P, Qiu L, Liu Y, et al. Metformin treatment was associated with decreased Mortality in COVID-19 patients with diabetes in a retrospective analysis. Am J Trop Med Hyg 2020;103(1):69–72. DOI: 10.4269/ajtmh.20-0375.
  12. Malhotra A, Hepokoski M, McCowen KC, et al. ACE2, metformin, and COVID-19. iScience 2020;23(9):101425. DOI: 10.1016/j.isci.2020. 101425.
  13. Viollet B, Guigas B, Garcia NS, et al. Cellular and molecular mechanisms of metformin: An overview. Clin Sci (Lond) 2012;122(6):253–270. DOI: 10.1042/CS20110386.
  14. Defronzo R, Fleming GA, Chen K, et al. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016;65(2):20–29. DOI: 10.1016/j.metabol.2015.10.014.
  15. Altarejos JY, Montminy M. CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 2011;12(3):141–151. DOI: 10.1038/nrm3072.
  16. Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 2010;59(7):1608–1615. DOI: 10.2337/db09-1679.
  17. Kopel J, Higuchi K, Ristic B, et al. The hepatic plasma membrane citrate transporter NaCT (SLC13A5) as a molecular target for metformin. Sci Rep 2020;10(1):8536. DOI: 10.1038/s41598-020-65621-w.
  18. Pernicova I, Korbonits M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10(3):143–156. DOI: 10.1038/nrendo.2013.256.
  19. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical J 2000;348(Pt 3): 607–614. PMID: 10839993.
  20. Polianskyte–Prause Z, Tolvanen TA, Lindfors S, et al. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J 2019;33(2):2858–2869. DOI: 10.1096/fj.201800529RR.
  21. Fruzzetti F, Perini D, Russo M, et al. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecol Endocrinol 2017;33(1):39–42. DOI: 10.1080/09513590.2016.1236078.
  22. Wu T, Xie C, Wu H, et al. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes Metab 2017;19(2):290–293. DOI: 10.1111/dom.12812.
  23. Jalving M, Gietema JA, Lefrandt JD, et al. Metformin: Taking away the candy for cancer? Eur J Cancer 2010;46(13):2369–2380. DOI: 10.1016/j.ejca.2010.06.012.
  24. Mullen PJ, Garcia G Jr, Purkayastha A, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun 2021;12(1):1876. DOI: 10.1038/s41467-021-22166-4.
  25. Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep 2020;20:100765. DOI: 10.1016/j.genrep.2020.100765.
  26. Chen X, Li X, Zhang W, et al. Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway. Metabolism 2018;83:256–270. DOI: 10.1016/j.metabol.2018.03.004.
  27. Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Sig Transduct Target Ther 2017;2:17023. DOI: 10.1038/sigtrans.2017.23.
  28. Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251(3):228–248. DOI: 10.1002/path.5471.
  29. Liu H, Gai S, Wang X, et al. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Cardiovasc Res 2020;116(10):1733–1741. DOI: 10.1093/cvr/cvaa191.
  30. Wu C, Ye D, Mullick AE, et al. Effects of renin–angiotensin inhibition on ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane protease serine 2) expression: Insights into COVID-19. Hypertension 2020;76(4):E29–E30. DOI: 10.1161/HYPERTENSIONAHA.120.15782.
  31. Bangi S, Barve R, Qamar A. Protective effects of CVD and DM medications in SARS-CoV-2 infection. SN Compr Clin Med 2020;2(9):1296–1298. DOI: 10.1007/s42399-020-00452-4.
  32. Peña–Silva RA, Chu Y, Miller JD, et al. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke 2012;43(12):3358–3363. DOI: 10.1161/STROKEAHA.112.667063.
  33. Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract 2020;162:108132. DOI: 10.1016/j.diabres.2020.108132.
  34. Kamyshnyi O, Matskevych V, Lenchuk T, et al. Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomed Pharmacother 2021;144. DOI: 10.1016/j.biopha.2021.112230.
  35. Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010;221(1):3–12. DOI: 10.1002/path.2697.
  36. Gassen NC, Niemeyer D, Muth D, et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS–coronavirus infection. Nat Commun 2019;10(1). DOI: 10.1038/s41467-019-13659-4.
  37. Yang N, Shen HM. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci 2020;16(10):1724–1731. DOI: 10.7150/ijbs.45498.
  38. Wang Y, Xu W, Yan Z, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res 2018;37(1):63. DOI: 10.1186/s13046-018-0731-5.
  39. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016;16(6):341–352. DOI: 10.1038/nri.2016.42.
  40. Bingula R, Filaire M, Radosevic–Robin N, et al. Desired turbulence? Gut–lung axis, immunity, and lung cancer. J Oncol 2017;2017:5035371. DOI: 10.1155/2017/5035371.
  41. Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590. DOI: 10.1016/j.ebiom.2019.11.051.
  42. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020;159(3):944.e8–955.e8. DOI: 10.1053/j.gastro.2020.05.048.
  43. de la Cuesta–Zuluaga J, Mueller NT, Corrales–Agudelo V, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 2017;40(1): 54–62. DOI: 10.2337/dc16-1324.
  44. Sun L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018;24(12):1919–1929. DOI: 10.1038/s41591-018-0222-4.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.