Indian Journal of Medical Biochemistry

Register      Login

VOLUME 25 , ISSUE 1 ( January-April, 2021 ) > List of Articles

Original Article

Differential Expression of SLC25A38 Gene in Patients of Acute Lymphoblastic Leukemia

Pritam Prakash, Santosh Kumar, Sanjay Kumar, Shraddha Raj, Poonam Sinha

Keywords : Acute lymphoblastic leukemia, Gene expression, Peripheral blood mononucleotide, Solute carrier 25A38

Citation Information : Prakash P, Kumar S, Kumar S, Raj S, Sinha P. Differential Expression of SLC25A38 Gene in Patients of Acute Lymphoblastic Leukemia. Indian J Med Biochem 2021; 25 (1):5-8.

DOI: 10.5005/jp-journals-10054-0168

License: CC BY-NC 4.0

Published Online: 00-00-0000

Copyright Statement:  Copyright © 2021; The Author(s).


Abstract

SLC25A38 gene produces a protein that belongs to the mitochondrial solute carrier family, SLC25. It is implicated in apoptotic pathways, which regulate intrinsic caspase-dependent apoptosis. The present study evaluates the expression of the SLC25A38 gene in acute lymphoblastic leukemia (ALL) patients. Among 30 leukemia patients, 25 were adult males and 5 were adult females. An average of 5.3-fold high expression of SLC25A38 gene among the ALL patients that was normalized to GAPDH relative to normal healthy volunteer was observed. There was a direct positive correlation between blast cell abundance and level of expression (r = 0.408, p = 0.025). The expression level was found to be associated with the proportion of blast cells in the bone marrow. The present results show that expression of SLC25A38 is a common feature in ALL and may be a novel biomarker for prognosis and diagnosis, as well as a potential therapeutic target for ALL.


PDF Share
  1. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 2016;16(8):494. DOI: 10.1038/nrc.2016.63.
  2. Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cellul Signal 2014;26(1):149–161. DOI: 10.1016/j.cellsig.2013.09.021.
  3. Faderl S, O’Brien S, Pui C-H, et al. Adult acute lymphoblastic leukemia: Concepts and strategies. Cancer 2010;116(5):1165–1176. DOI: 10.1002/cncr.24862.
  4. Gökbuget N, Kneba M, Raff T, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 2012;120(9):1868–1876. DOI: 10.1182/blood-2011-09-377713.
  5. Korfi K, Smith M, Swan J, et al. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors. Cell Death Dis 2016;7(4):e2177. DOI: 10.1038/cddis.2016.70.
  6. Santiago R, Vairy S, Sinnett D, et al. Novel therapy for childhood acute lymphoblastic leukemia. Expert Opin Pharmacother 2017;18(11):1081–1099. DOI: 10.1080/14656566.2017.1340938.
  7. Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008;112(2):416–432. DOI: 10.1002/cncr.23169.
  8. Smith MA, Seibel NL, Altekruse SF, et al. Outcomes for children and adolescents with cancer: Challenges for the twenty-first century. J Clin Oncol 2010;28(15):2625–2634. DOI: 10.1200/JCO.2009.27.0421.
  9. Eulàlia G, Jordi R, Josep-Maria R. Acute lymphoblastic leukemia of T progenitors: from biology to clinics. Med Clin 2015;144(5):223–229. DOI: 10.1016/j.medcli.2014.01.029.
  10. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015;373(16):1541–1552. DOI: 10.1056/NEJMra1400972.
  11. Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta 2016;1863(10):2362–2378. DOI: 10.1016/j.bbamcr.2016.03.007.
  12. Zhang Y, Zhang Y, Sun K, et al. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2019;11(1):1–13. DOI: 10.1093/jmcb/mjy052.
  13. Guernsey DL, Jiang H, Campagna DR, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia. Nat Genet 2009;41(6):651–653. DOI: 10.1038/ng.359.
  14. Bergmann AK, Campagna DR, Mcloughlin EM, et al. Systematic molecular genetic analysis of congenital sideroblastic anemia: evidence for genetic heterogeneity and identification of novel mutations. Pediatr Blood Cancer 2010;54(2):273–278. DOI: 10.1002/pbc.22244.
  15. Kannengiesser C, Sanchez M, Sweeney M, et al. Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia. Haematoligica 2011;96(6):808–813. DOI: 10.3324/haematol.2010.039164.
  16. Zhang H, Zhang Y, Chen Y, et al. Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration. J Neurosci 2012;32(44):15565–15576. DOI: 10.1523/JNEUROSCI.3668-12.2012.
  17. Hediger MA, Romero MF, Peng JB, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 2004;447(5):465–468. DOI: 10.1007/s00424-003-1192-y.
  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 2001;25(4):402–408. DOI: 10.1006/meth.2001.1262.
  19. Chen H, Lu Q, Zhang Y, et al. Overexpression of SLC25A38 protein on acute lymphoblastic leukemia cells. Oncol Lett 2014;7(5):1422–1426. DOI: 10.3892/ol.2014.1947.
  20. Ferrando AA, Look AT. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol 2000;37(4):381–395. DOI: 10.1016/s0037-1963(00)90018-0.
  21. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002;1(1):75–87. DOI: 10.1016/s1535-6108(02)00018-1.
  22. Soulier J, Clappier E, Cayuela JM, et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005;106(1):274–286. DOI: 10.1182/blood-2004-10-3900.
  23. Ferrando AA, Armstrong SA, Neuberg DS, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003;102(1):262–268. DOI: 10.1182/blood-2002-10-3221.
  24. Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol 2010;3(1):37. DOI: 10.1186/1756-8722-3-37.
  25. Fernando TR, Rodriguez-Malave NI, Rao DS. MicroRNAs in B cell development and malignancy. J Hematol Oncol 2012;5(1):7. DOI: 10.1186/1756-8722-5-7.
  26. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129–138. DOI: 10.1038/nrd2742.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.