Indian Journal of Medical Biochemistry

Register      Login

VOLUME 28 , ISSUE 3 ( September-December, 2024 ) > List of Articles

REVIEW ARTICLE

A Comprehensive Review on Effects of Peritoneal Dialysis in the Treatment of Acute Renal Damage

Sanjana Bhagat, Shubham Tiwari

Keywords : Biocompatible peritoneal dialysis solution, Dialysis adequacy, Encapsulating peritoneal sclerosis, Erythropoiesis-stimulating agents, Metabolic syndrome, Peritoneal dialysis, Peritoneal permeability, Peritoneal equilibration test

Citation Information : Bhagat S, Tiwari S. A Comprehensive Review on Effects of Peritoneal Dialysis in the Treatment of Acute Renal Damage. Indian J Med Biochem 2024; 28 (3):76-81.

DOI: 10.5005/jp-journals-10054-0238

License: CC BY-NC 4.0

Published Online: 19-08-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Aim and objective: To evaluate the prevalence and impact of physical symptoms in peritoneal dialysis (PD) patients, assess the effectiveness of PD in managing acute kidney injury (AKI) during COVID-19 and in patients who are suffering from congestive heart failure (CHF), investigate the incidence of vascular calcification and the role of biocompatible PD solutions (BPDSs) in improving patient outcomes. Background: When treating acute renal failure, PD involves inserting a catheter into the abdomen, and a special fluid is introduced to draw waste and excess fluids from the blood through the peritoneal membrane. This process helps to balance electrolytes and remove toxins from the body. Compared to hemodialysis, PD offers advantages such as flexibility in scheduling, fewer dietary restrictions, and preservation of residual kidney function. However, potential complications include infection, hernias, and fluid overload. Overall, PD can be an effective option for managing acute renal failure, but careful monitoring and management of complications are essential. Conclusion: Peritoneal dialysis is a practical and safe alternative to hemodialysis for patients without established access. It offers acceptable complication rates and patient and method survival. Comprehensive renal replacement therapy (RRT) programs should include a tailored educational program for a successful PD urgent start.


PDF Share
  1. Mercado MG, Smith DK, Guard EL. Acute kidney injury: Diagnosis and management. Am Fam Physician 2019;100(11):687–694. PMID: 31790176.
  2. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019;394(10212):1949–1964. DOI: 10.1016/S0140-6736(19)32563-2.
  3. Bywaters EG, Beall D. Crush injuries with impairment of renal function. Br Med J 1941;1(4185):427–432. DOI: 10.1136/bmj.1.4185.427.
  4. Skorecki K, Green J, Brenner BM. Chronic renal failure. In: Kasper DL, Braunwald E, Fauci AS, et al. (Eds). Harrison's Principles of Internal Medicine, 16th edition. New York, NY: McGraw-Hill; 2005. pp. 1653–1663.
  5. Brenner BM, Brady HR. Renal failure that is chronic. Kasper DL, Braunwald E, Fauci AA, et al (Eds). Internal Medicine Fundamentals by Harrison, 16th Edition. New York, NY; McGraw-Hill; 2005. pp. 1644–1653.
  6. Joseph Loscalzo, Anthony Fauci, Dennis Kasper, et al. Harrison's Principles of Internal Medicine, 18th edition. New York, NY: M.H. McGraw Professional; 2011. pp. 61–102.
  7. Harissis HV, Katsios CS, Koliousi EL, et al. A new simplified one port laparoscopic technique of peritoneal dialysis catheter placement with intra-abdominal fixation. Am J Surg 2006;192(1):125–129. DOI: 10.1016/j.amjsurg.2006.01.033.
  8. Munden J. Best practices: Evidence-based nursing procedures, 2nd edition. Philadelphia: Lippincott Williams & Wilkins; 2007. pp. 100–200.
  9. Crowley LV. An introduction to human disease: Pathology and pathophysiology correlations. Jones & Bartlett Publishers; 7th edition. Philadelphia: Pennsylvania; 2009. pp. 507-509.
  10. McPhee SJ, Tierney LM, Papadakis MA. Current medical diagnosis and treatment. McGraw-Hill; 2006. pp. 934–935.
  11. Rippe B, Venturoli D, Simonsen O, et al. Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int 2004;24(1):10–27. PMID: 15104333.
  12. Daugirdas JT, Blake PG, Ing TS. Physiology of Peritoneal Dialysis. Handbook of dialysis. Lippincott Williams & Wilkins; 4th edition. Sudbury, Massachusetts; 2006. pp. 323.
  13. Htay H, Johnson DW, Craig JC, et al. Catheter type, placement and insertion techniques for preventing catheter-related infections in chronic peritoneal dialysis patients. Cochrane Database Syst Rev 2019;5(5):CD004680. DOI: 10.1002/14651858.CD004680.pub3.
  14. Jha V, Malhotra HS, Sakhuja V, et al. Spectrum of hospital acquired acute renal failure in underdeveloped countries. Chandigarh study. Q J Med 1992;83(303):497–505. PMID: 1484927.
  15. Palevsky PM, Zhang JH, O'Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury. NEJM 2008;359(1):7–20. DOI: 10.1056/NEJMoa0802639.
  16. Holmes CL, Walley KR. Low-dose dopamine in the ICU is bad medicine. Chest 2003;123(4):1266–1275. DOI: 10.1378/chest.123.4.1266.
  17. Uchino S, Doig GS, Bellomo R, et al. Diuretics and mortality in acute renal failure. Crit Care Med 2004;32(8):1669–1677. DOI: 10.1097/01.ccm.0000132892.51063.2f.
  18. Davis A, Gooch I. The use of loop diuretics in acute renal failure in critically ill patients to reduce mortality, maintain renal function, or avoid the requirements for renal support. Emerg Med J 2006;23(7):569–570. DOI: 10.1136/emj.2006.038513.
  19. Pannu N, Klarenbach S, Wiebe N, et al. Renal replacement therapy in patients with acute renal failure: A systematic review. JAMA 2008;299(7):793–805. DOI: 10.1001/jama.299.7.793.
  20. Holley JL. Clinical approach to the diagnosis of acute renal failure. In: Greenberg A, Cheung AK (Eds). Primer on Kidney Diseases, 5th edition. Philadelphia, PA: National Kidney Foundation; 2009. p. 278.
  21. Rahman M, Shad F, Smith MC. Acute kidney injury: A guide to diagnosis and management Am Fam Physician 2012;86(7):631–639. PMID: 23062091.
  22. González E, Gutiérrez E, Galeano C, et al. Grupo Madrileño De Nefritis Interstitial. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int 2008;73(8):940–946. DOI: 10.1038/sj.ki.5002776.
  23. Egal Mohamud, Erler Nicole S, de Geus, et al. Targeting oliguria reversal in goal-directed hemodynamic management does not reduce renal dysfunction in perioperative and critically ill patients: A systematic review and meta-analysis. Anesth Analg 2016;122 (1):173–185. DOI: 10.1213/ANE.0000000000001027.
  24. Mizota T, Yamamoto Y, Hamada M, et al. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br J Anaesth 2017;119(6):1127–1134. DOI: 10.1093/bja/aex255.
  25. Davison SN. Pain in hemodialysis patients: Prevalence, cause, severity, and management. Am J Kidney Dis 2003;42(6):1239–1247. DOI: 10.1053/j.ajkd.2003.08.025.
  26. Thong M SY, Dijk VS, Noordzij M, et al. Symptom clusters in incident dialysis patients: Associations with clinical variables and quality of life. Nephrol Dial Transplant 2009;24(1):225–230. DOI: 10.1093/ndt/gfn449.
  27. Rocco MV, Gassman JJ, Wang SR, et al. Cross-sectional study of quality of life and symptoms in chronic renal disease patients: the Modification of Diet in Renal Disease Study. Am J Kidney Dis 1997;29(6):888–896. DOI: 10.1016/s0272-6386(97)90463-7.
  28. George J, Varma S, Kumar S, et al. Comparing continuous veno-venous hemodiafiltration and peritoneal dialysis in critically ill patients with acute kidney injury: A pilot study. Perit Dial Int 2011;31(4):422–429. DOI: 10.3747/pdi.2009.00231.
  29. Gabriel DP, Caramori JT, Martim LC, et al. High volume peritoneal dialysis vs daily hemodialysis: A randomized, controlled trial in patients with acute kidney injury. Kidney Int Suppl 2008(108): S87–S93. DOI: 10.1038/sj.ki.5002608.
  30. Liu L, Zhang L, Liu GJ, et al. Peritoneal dialysis for acute kidney injury. Cochrane Data-base Syst Rev 2017;12(12):CD011457. DOI: 10.1002/14651858.CD011457.pub2.
  31. Almeida CP, Balbi AL, Ponce D. Effect of peritoneal dialysis vs. Haemodialysis on respiratory mechanics in acute kidney injury patients. Clin Exp Nephrol 2018;22(6):1420–1426. DOI: 10.1007/s10157-018-1598-7.
  32. Mehta RL, Burdmann EA, Cerdá J, et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: A multinational cross-sectional study. Lancet 2016;387(10032):2017–2025. DOI: 10.1016/S0140-6736(16)30240-9.
  33. Cullis B, Abdelraheem M, Abrahams G, et al. Peritoneal dialysis for acute kidney injury. Perit Dial Int 2014;34(5):494–517. DOI: 10.3747/pdi.2013.00222.
  34. Ponce D, Balbi AL, Durand JB, et al. Acute peritoneal dialysis in the treatment of COVID-19-related acute kidney injury. Clin Kidney J 2020;13(3):269–273. DOI: 10.1093/ckj/sfaa102.
  35. Durand PY, Chanliau J, Gambéroni J, et al. Measurement of hydrostatic intraperitoneal pressure: A necessary routine test in peritoneal dialysis. Perit Dial Int 1996;16(Suppl 1):S84–S87. PMID: 8728169.
  36. Bertoli SV, Musetti C, Ciurlino D, et al. Peritoneal ultrafiltration in refractory heart failure: A cohort study. Perit Dial Int 2014;34(1):64–70. DOI: 10.3747/pdi.2012.00290.
  37. Szabo RP, Peth A, Fedor R, et al. Our experiences with peritoneal dialysis in patients with diuretic-resistant heart failure. Cardiol Hung 2018;48:179–183.
  38. Courivaud C, Kazory A, Crepin T, et al. Peritoneal dialysis reduces the number of hospitalization days in heart failure patients refractory to diuretics. Perit Dial Int 2014;34(1):100–108. DOI: 10.3747/pdi.2012.00149.
  39. Román-García P, Carrillo-López N, Fernández-Martín JL, et al. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone 2010;46(1):121–128. DOI: 10.1016/j.bone.2009.09.006.
  40. De Maré A, Maudsley S, Azmi A, et al. Sclerostin as regulatory molecule in vascular media calcification and the bone-vascular axis. Toxins (Basel) 2019;11(7):428. DOI: 10.3390/toxins11070428.
  41. Zeng C, Guo C, Cai J, et al. Serum sclerostin in vascular calcification and clinical outcome in chronic kidney disease. DiabVasc Dis Res 2018;15(2):99–105. DOI: 10.1177/1479164117742316.
  42. Li M, Zhou H, Yang M, et al. Relationship between serum sclerostin, vascular sclerostin expression and vascular calcification assessed by different methods in ESRD patients eligible for renal transplantation: A cross-sectional study. Int Urol Nephrol 2019;51(2):311–323. DOI: 10.1007/s11255-018-2033-4.
  43. Sun X, Yang K, Wang C, et al. Paradoxical response to mechanical unloading in bone loss, microarchitecture, and bone turnover markers. Int J Med Sci 2015;12(3):270–279. DOI: 10.7150/ijms. 11078.
  44. Zhu D, Mackenzie NC, Millán JL, et al. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 2011;6(5):e19595. DOI: 10.1371/journal.pone.0019595.
  45. Balcı M, Kırkpantur A, Turkvatan A, et al. Sclerostin as a new key player in arteriovenous fistula calcification. Herz 2015;40(2):289–297. DOI: 10.1007/s00059-013-3992-y.
  46. Medicine AA, EC. Retracted: The correlation between serum sclerostin level and arterial stiffness in peritoneal dialysis patients. Evid Based Complement Alternat Med 2023;2023:9807476. DOI: 10.1155/2023/9807476.
  47. Wang XR, Yuan L, Zhang JJ, et al. Serum sclerostin values are associated with abdominal aortic calcification and predict cardiovascular events in patients with chronic kidney disease stages 3–5D. Nephrology (Carlton) 2017;22(4):286–292. DOI: 10.1111/nep.12813.
  48. Zou Y, Yang M, Wang J, et al. Association of sclerostin with cardiovascular events and mortality in dialysis patients. Ren Fail 2020;42(1):282–288. DOI: 10.1080/0886022X.2020.1741386.
  49. Kanbay M, Solak Y, Siriopol D, et al. Sclerostin, cardiovascular disease and mortality: A systematic review and meta-analysis. Int Urol Nephrol 2016;48(12):2029–2042. DOI: 10.1007/s11255-016- 1387-8.
  50. Cho Y, Johnson DW, Badve SV, et al. The impact of neutral-pH peritoneal dialysates with reduced glucose degradation products on clinical outcomes in peritoneal dialysis patients. Kidney Int 2013;84(5):969–979. DOI: 10.1038/ki.2013.190.
  51. Haag-Weber M, Kramer R, Haake R, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: A prospective randomized study. Nephrol Dial Transplant 2010;25(7):2288–2296. DOI: 10.1093/ndt/gfq087.
  52. Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: The effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 2003;66(1):408–418. DOI: 10.1111/j.1523-1755.2004.00747.x.
  53. Park SH, Do JY, Kim YH, et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: A randomized controlled 1-year follow-up study. Nephrol Dial Transplant 2012;27(3):1191–1199. DOI: 10.1093/ndt/gfr451.
  54. Johnson DW, Hawley CM, McDonald SP, et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2010;25(6):1973–1979. DOI: 10.1093/ndt/gfp780.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.