Indian Journal of Medical Biochemistry

Register      Login

VOLUME 29 , ISSUE 1 ( January-April, 2025 ) > List of Articles

ORIGINAL RESEARCH ARTICLE

Analysis of Renal Stone Composition Using Fourier Transform Infrared Spectroscopy: A Cross-sectional Study of 3,789 Cases

Jayesh Warade

Keywords : Calcium oxalate, Fourier transform infrared spectroscopy, Nephrolithiasis, Renal stones, Stone composition, Urinary tract stones

Citation Information : Warade J. Analysis of Renal Stone Composition Using Fourier Transform Infrared Spectroscopy: A Cross-sectional Study of 3,789 Cases. Indian J Med Biochem 2025; 29 (1):19-33.

DOI: 10.5005/jp-journals-10054-0246

License: CC BY-NC 4.0

Published Online: 20-12-2024

Copyright Statement:  Copyright © 2025; The Author(s).


Abstract

Background: Renal stones, commonly known as kidney stones, are a significant urological condition caused by the crystallization of dietary minerals in the kidneys. Their composition varies and can include calcium oxalate, calcium phosphate, uric acid, cystine, and other minerals. Fourier transform infrared (FTIR) spectroscopy, a semi-quantitative and automated method, is an advanced technique for determining stone composition, aiding in personalized treatment and prevention of recurrence. Objectives: The study aims to: • Analyze the mineral composition of renal stones using FTIR spectroscopy. • Classify the mineral components of renal stones. • Study the trends and morphological characteristics of stones. Methods: This cross-sectional study analyzed 3,789 renal stones received from August 2019 to May 2024. The stones were prepared and analyzed using the Agilent Cary 630 FTIR Analyzer. Data on mineral composition and morphology were collected and processed to identify various mineral trends and stone compositions. Results: Demographics: 76.3% of stones were from male patients, with the highest incidence in the 31–40 age-group. Composition: 93.5% of stones were of mixed composition, with calcium oxalate monohydrate being the most prevalent (38.3%). Rare compositions: Stones with rare compositions, such as xanthine and 2, 8-dihydroxyadenine, were identified, providing insight into specific metabolic disorders. Conclusion: Fourier transform infrared spectroscopy provides reliable results for stone composition, enabling effective and individualized treatment plans. The predominance of mixed stones underscores the need for multifactorial treatment approaches addressing dietary, metabolic, and infectious factors. Further research, particularly using advanced techniques like genetic testing, may enhance understanding of stone formation.


PDF Share
  1. Bao Y, Tu X, Wei Q. Water for preventing urinary stones. Cochrane Database Syst Rev 2020;2(2):CD004292. DOI: 10.1002/14651858.CD004292.pub4.
  2. Khan AH, Imran S, Talati J, et al. Fourier transform infrared spectroscopy for analysis of kidney stones. Investig Clin Urol 2018;59(1):32–37. DOI: 10.4111/icu.2018.59.1.32.
  3. Lipkin M, Matlaga BR. Advances in renal stone analysis: New technologies and clinical implications. Curr Opin Urol 2021;31(4): 240–245. DOI: 10.1097/MOU.0000000000000803.
  4. Joyce A, Wassermann J. Renal stone analysis: Current concepts and future directions. J Endourol. 2020;34(1):15–21. DOI: 10.1089/end.2019.0807.
  5. Rodgers AL, Webber D. The influence of sex hormones on renal stone formation in men and women. Urol Res 2019;47(4):303–311. DOI: 10.1007/s00240-019-01120-0.
  6. Scales CD Jr, Smith AC, Hanley JM, et al. Prevalence of kidney stones in the United States. Eur Urol 2012;62(1):160–165. DOI: 10.1016/j.eururo.2012.03.052.
  7. Pearle MS, Calhoun EA, Curhan GC. Urologic diseases in America project: Urolithiasis. J Urol 2005;173(3):848–857. DOI: 10.1097/01.ju.0000152082.14384.d7.
  8. Stamatelou KK, Francis ME, Jones CA, et al. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 2003;63(5):1817–1823. DOI: 10.1046/j.1523-1755.2003.00917.x.
  9. Tiselius HG. Struvite stones: Pathogenesis, clinical picture, and therapeutic alternatives. Scand J Urol Nephrol 2011;45(5):365–370. DOI: 10.3109/00365599.2011.594123.
  10. Goldfarb DS, Averch TD. Medical management of struvite stones. Nephron Clin Prac 2014;128(3-4):62–67. DOI: 10.1159/000366214.
  11. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Investig 2005;115(10):2598–2608. DOI: 10.1172/JCI26662.
  12. Kumar V, Farell G, Lieske JC. Calcium oxalate nephrolithiasis: Pathophysiology and molecular genetics. Kidney Int 2019;95(2): 277–228. DOI: 10.1016/j.kint.2018.10.026.
  13. Ghani KR, Andonian S, Bultitude M, et al. Impact of stone composition on 24-hour urine parameters in patients with urolithiasis. J Endourol 2021;35(1):33–40. DOI: 10.1089/end.2020.0809.
  14. Ferraro PM, Curhan GC, Gambaro G, et al. A review of the biochemical composition of urinary stones. Urol Int 2020;104(5–6):445–453. DOI: 10.3390/nu12030779.
  15. Sakhaee K, Maalouf NM. Metabolic syndrome and uric acid nephrolithiasis. Semin Nephrol 2012;28(2):174–180. DOI: 10.1016/j.semnephrol.2011.10.006.
  16. Moe OW. Kidney stones: Pathophysiology and medical management. Lancet 2006;367(9507):333–344. DOI: 10.1016/S0140-6736(06) 68071-9.
  17. Umair M, Hussain SZ, Khan A, et al. Pure xanthine pediatric urolithiasis: A cause of acute renal failure, Urology Case Reports 2021;34:101438. DOI: 10.1016/j.eucr.2020.101438.
  18. Tate NM, Minor KM, Lulich JP, et al. Multiple variants in XDH and MOCOS underlie xanthine urolithiasis in dogs, Molecular Genetics and Metabolism Reports 2021;29:100792. DOI: 10.1016/j.ymgmr.2021.100792.
  19. Edvardsson VO, Sahota A, Palsson R. Adenine phosphoribosyltransferase deficiency. Am J Kidney Dis 2013;61(4):611–617. PMID: 22934314.
  20. Nasr SH, D'Agati VD. Renal crystal deposition disorders. Am J Kidney Dis 2011;57(6):1312–1326. DOI: 10.3265/Nefrologia.pre2010.Oct. 10644.
  21. Hoppe B, Cogal AG, Bergstralh EJ, et al. Primary hyperoxaluria in adults: New insights into an old disease. Kidney Int 2015;88(5):1100–1105. DOI: 10.1681/ASN.2014070698.
  22. Milliner DS, Harris PC, Sas DJ, et al. Primary hyperoxaluria type 1: Update and challenges for clinical management. Clin Kidney J 2020;13(5):811–821. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1283/.
  23. Narita I, Gejyo F. Cholesterol stones in the kidney: Case report and review of the literature. Nephrol Dial Transpl 2000;15(9):1445–1448. DOI: 10.1038/sj.ki.5000251.
  24. Miller NL, Lingeman JE. Management of kidney stones. BMJ 2007;334(7591):468–472. DOI: 10.1136/bmj.39113.480185.80.
  25. Afshar K, et al. Foreign body stones: A rare complication of urolithiasis. J Endourol 2004;18(2):127–129. DOI: 10.1089/089277904322836547.
  26. Goldfarb DS. Drug-induced urinary calculi. Ann Intern Med 2004;140(4):352–357.
  27. Assimos DG, et al. Medication-induced nephrolithiasis. J Clin Pharmacol 2018;58(6):575–582. PMID: 16985842.
  28. Cameron MA, Maalouf NM, Adams-Huet B, et al. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol 2006;17(5):1422–1428. DOI: 10.1681/ASN.2005121246.
  29. Gautham Viswanathan, Mark J. Sarnak, Hocine Tighiouart, Paul Muntner and Lesley A. Inker. The association of chronic kidney disease complications by albuminuria and glomerular filtration rate: A cross-sectional analysis 2013;80:29–39. DOI: 10.5414/CN107842.
  30. Caliskan Y, Buck J, Lombardo L, et al. Silica Urinary Stones: A Case Report and A Brief Review of Literature. Iran J Kidney Dis 2022;16(4):266–268. PMID: 35962642.
  31. Tareen B, Stein R. Foreign body-induced urolithiasis. J Urol 2009;182(6):2480–2485.
  32. Goldfarb DS. Drug-induced nephrolithiasis. Curr Opin Nephrol Hyperten 2004;13(4):385–389.
  33. Hoppe B, Leumann E, Hulton SA. Pathophysiological aspects of primary hyperoxaluria: New directions for treatment. Am J Nephrol 2005;25(5):347–354.
  34. Afshar K, MacNeily AE. Foreign body urolithiasis: Diagnosis and treatment of an unusual case. J Urol 2003;169(3):1084–1086.
  35. Rosette JJ, et al. The clinical challenge of urolithiasis. Urol Res 2014;42(3):219–221. DOI: 10.1007/s00240-014-0657-3.
  36. A review of clinical applications of infrared spectroscopy for kidney stone analysis. J Urol 2020;204(3):473–482.
  37. Metabolomic analysis of urinary stone formers using high-resolution mass spectrometry. Sci Rep 2020;10:1672.
  38. Ekeruo WO, Jr K, Sindhwani P, et al. Infrared spectroscopy in renal stone analysis: A review. Urology. 2021;148:30–35. DOI: 10.1016/j.urology.2020.12.030.
  39. Renal Stone Analysis: Advantages and Disadvantages of Techniques Currently Available. J Endourol 2018;32(7):577–588. DOI: 10.1089/end.2018.0405.
  40. Tasian G, Canales B. Renal stone analysis using mass spectrometry: A review of current technologies and applications. Urol Pract 2020;7(4):219–225.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.