A Graphical Tool for Arterial Blood Gas Interpretation using Standard Bicarbonate and Base Excess

Rajini Samuel

ABSTRACT

Introduction: Arterial blood gas (ABG) analysis plays an important role in the treatment of intensive care patients, especially for critically ill patients but are often difficult to understand, interpret, and sometimes confusing if both the metabolic and respiratory disturbances are found. There are only few graphical tools available depicting the respiratory and metabolic acid–base disturbances but are rarely used in clinical setting.

Aim: The aim of the current research study is to develop a newer graphical tool for ABG interpretation.

Materials and methods: A total of 120 arterial blood samples were collected and analyzed using ABG analyzer. The ABG parameters like pH, pCO2, HCO3, and standard HCO3 values were noted. Standard base excess was calculated from the obtained data. Arterial blood gas interpretation was done and all the 120 samples were classified into various acid–base disorders. The difference in value between bicarbonate and standard bicarbonate (HCO3 – standard HCO3) was calculated. Carbonic acid was derived from pCO2 values and the ratio (HCO3 – standard HCO3)/H2CO3 was found. The relationship between pCO2, difference between bicarbonate and standard bicarbonate values, and the ratio (HCO3 – standard HCO3)/H2CO3 were graphically analyzed. A novel four-quadrant graph method was developed using standard base excess in the x-axis and the ratio (HCO3 – standard HCO3)/H2CO3 values in the y-axis.

Results: Each acid–base disorders will occupy any of the four quadrants and the normal cases with no acid–base disturbances will be seen around the center of the graph.

Conclusion: This newer graphical tool may help in easier and quicker interpretation of ABG reports compared with the other existing graphical tools.

Clinical significance: This simple four-quadrant graph method may provide a rough guide for ABG interpretation, which, when applied at the appropriate time, results in timely management.

Keywords: Graphical tool, Standard base excess, Standard bicarbonate.

How to cite this article: Samuel R. A Graphical Tool for Arterial Blood Gas Interpretation using Standard Bicarbonate and Base Excess. Indian J Med Biochem 2018;22(1):85-89.
the extracellular fluid at hemoglobin concentration of 5 gm/dL.7-9

The understanding of acid–base disturbances, classifying and analyzing the ABG data is sometimes challenging and difficult, especially for mixed acid–base disorders. The ABG analysis report should be clinically correlated before interpretation. The diagnosis of acid–base disturbances is very important because earlier detection may help in the treatment of clinical derangements.10-12

In the present study, the difference in value between bicarbonate and standard bicarbonate was calculated and the ratio (HCO3 − standard HCO3)/H2CO3 was found. The aim of the current research study is to determine the correlation between standard base excess and the ratio of (HCO3 − standard HCO3)/H2CO3 and to apply them to analyze the various acid–base disorders in a four-quadrant graphical method for better ABG interpretation.

MATERIALS AND METHODS

Ethical committee clearance was obtained before the commencement of the study. Based on the previous ABG analysis research data available, sample size was calculated. A total of 120 ABG analysis samples were analyzed. Strict precautions were taken to avoid preanalytical errors and the consistency of the ABG report was checked by using the modified Henderson equation.2 The samples were analyzed by a senior technician using ABG Analyzer GEM PREMIER 3000. Good quality control is maintained in the central clinical laboratory. Automated calibration is done in this instrument.

The main parameters like measured pH, pCO2, HCO3, and standard HCO3 values were noted. Carbonic acid concentration was calculated from pCO2. The difference between bicarbonate and standard bicarbonate was calculated which is denoted by (HCO3 − standard HCO3) (mmol/L or mEq/L). Carbonic acid was derived from pCO2 values and the ratio (HCO3 − standard HCO3)/H2CO3 was found.

Calculation of Carbonic acid Concentration

The carbonic acid concentration (mmol/L) was calculated by the given formula:

\[\text{H}_2\text{CO}_3 = 0.03 \times \text{pCO}_2 \]

Calculation of (HCO3 − Standard HCO3)/H2CO3

The difference between bicarbonate and standard bicarbonate value was calculated which is denoted by (HCO3 − standard HCO3) (mmol/L or mEq/L). Carbonic acid was derived from pCO2 values and the ratio (HCO3 − standard HCO3)/H2CO3 was found.

Calculation of Standard Base Excess

The standard base excess or the base excess of the extracellular fluid (mmol/L or mEq/L) is calculated by the following formula13:

\[\text{Standard base excess} = \text{HCO}_3^- - 24.8 + 16.2 (\text{pH} - 7.4) \]

Calculations for some of the ABG samples are given below:

1. pH: 7.38, pCO2: 42 mm Hg, HCO3: 24.8 mmol/L, and standard HCO3: 24.6 mmol/L

Calculation

\[\text{Carbonic acid (H}_2\text{CO}_3\text{)} \text{ concentration} = 1.26 \text{ mmol/L} \]
\[\left(\text{HCO}_3^- - \text{standard HCO}_3^- \right) / \text{H}_2\text{CO}_3^- = 0.2/1.26 = 0.16 \]

\[\text{Standard base excess} = 24.8 - 24.8 + 16.2 (7.38 - 7.4) = -0.32 \text{ mmol/L or mEq/L} \]

2. pH: 7.45, pCO2: 73 mm Hg, HCO3: 50.7 mmol/L, and standard HCO3: 42.3 mmol/L

Calculation

\[\text{Carbonic acid (H}_2\text{CO}_3\text{)} \text{ concentration} = 2.19 \text{ mmol/L} \]
\[\left(\text{HCO}_3^- - \text{standard HCO}_3^- \right) / \text{H}_2\text{CO}_3^- = 8.4/2.19 = 3.8 \]

\[\text{Standard base excess} = 50.7 - 24.8 + 16.2 (7.45 - 7.4) = 26.71 \text{ mmol/L} \]

3. pH: 7.25, pCO2: 36 mm Hg, HCO3: 15.8 mmol/L, and standard HCO3: 16.4 mmol/L

Calculation

\[\text{Carbonic acid (H}_2\text{CO}_3\text{)} \text{ concentration} = 1.08 \text{ mmol/L} \]
\[\left(\text{HCO}_3^- - \text{standard HCO}_3^- \right) / \text{H}_2\text{CO}_3^- = -0.6/1.08 = -0.6 \]

\[\text{Standard base excess} = 15.8 - 24.8 + 16.2 (7.25 - 7.4) = -11.43 \text{ mmol/L} \]

4. pH: 7.35, pCO2: 22 mm Hg, HCO3: 12.1 mmol/L, and standard HCO3: 15.7 mmol/L

Calculation

\[\text{Carbonic acid (H}_2\text{CO}_3\text{)} \text{ concentration} = 0.66 \text{ mmol/L} \]
\[\left(\text{HCO}_3^- - \text{standard HCO}_3^- \right) / \text{H}_2\text{CO}_3^- = -3.6/0.66 = -5.5 \]

\[\text{Standard base excess} = 12.1 - 24.8 + 16.2 (7.35 - 7.4) = -13.51 \text{ mmol/L} \]

5. pH: 7.51, pCO2: 20 mm Hg, HCO3: 16 mmol/L, and standard HCO3: 20.6 mmol/L

Calculation

\[\text{Carbonic acid (H}_2\text{CO}_3\text{)} \text{ concentration} = 0.66 \text{ mmol/L} \]
\[\left(\text{HCO}_3^- - \text{standard HCO}_3^- \right) / \text{H}_2\text{CO}_3^- = -3.6/0.66 = -5.5 \]

\[\text{Standard base excess} = 12.1 - 24.8 + 16.2 (7.35 - 7.4) = -13.51 \text{ mmol/L} \]
Calculation

Carbonic acid (H$_2$CO$_3$) concentration = 0.6 mmol/L
(HCO$_3$ – standard HCO$_3$) = 16 – 20.6 = −4.6 mmol/L
(HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$ = −4.6/0.6 = −7.7

Standard base excess = HCO$_3$ – 24.8 + 16.2 (pH − 7.4)
= 16 − 24.8 + 16.2 (7.51–7.4)
= −7.02 mmol/L

6. pH: 7.6 pCO$_2$: 22 mm Hg, HCO$_3$: 26.6 mmol/L, and standard HCO$_3$: 29.8 mmol/L

Calculation

Carbonic acid (H$_2$CO$_3$) concentration = 0.66 mmol/L
(HCO$_3$ – standard HCO$_3$) = 26.6 − 29.8 = −3.2 mmol/L
(HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$ = −3.2/0.66 = −4.8

Standard base excess = HCO$_3$ – 24.8 + 16.2 (pH − 7.4)
= 26.6 − 24.8 + 16.2 (7.6–7.4)
= 5.04 mmol/L

RESULTS

All 120 samples were classified into various acid–base disorders and are clearly depicted in Table 1. The relationship between pCO$_2$, difference between bicarbonate and standard bicarbonate (HCO$_3$ – standard HCO$_3$) and the ratio (HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$ was analyzed and is shown in Graphs 1 and 2. The correlation between standard base excess and the ratio (HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$ was analyzed for various acid–base disorders and is clearly shown in the four-quadrant Graph 3.

Table 1: Classification and representation of various acid–base disorders in a four-quadrant graph

<table>
<thead>
<tr>
<th>Acid–base disturbances with number of cases</th>
<th>(HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$ range of values</th>
<th>Area in the quadrant graph</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal: 10</td>
<td>−1.1 to 0.3</td>
<td>Around the center of the graph</td>
<td>10</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>Normal pH: 2</td>
<td>3rd quadrant</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Decreased pH: 7</td>
<td>3rd and 4th quadrants nearer to x-axis (negative)</td>
<td>13</td>
</tr>
<tr>
<td>Metabolic acidosis with decreased PCO$_2$</td>
<td>Normal pH: 5</td>
<td>3rd quadrant</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Decreases pH: 8</td>
<td>3rd quadrant</td>
<td>13</td>
</tr>
<tr>
<td>Respiratory acidosis with increased base excess</td>
<td>Decreased pH: 10</td>
<td>1st quadrant</td>
<td>10</td>
</tr>
<tr>
<td>Respiratory acidosis with base deficit</td>
<td>Decreased pH: 3</td>
<td>4th quadrant</td>
<td>3</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>Normal pH: 4</td>
<td>1st and 2nd quadrants nearer to x-axis (positive)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Increased pH: 8</td>
<td>1st quadrant</td>
<td>17</td>
</tr>
<tr>
<td>Metabolic alkalosis and increased PCO$_2$</td>
<td>Normal pH: 13</td>
<td>1st quadrant</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Increased pH: 4</td>
<td>3rd quadrant just below the normal group</td>
<td>16</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>Normal pH: 2</td>
<td>2nd and 3rd quadrants nearer to y-axis (negative)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Increased pH: 14</td>
<td>3rd quadrant</td>
<td>28</td>
</tr>
<tr>
<td>Respiratory alkalosis with base deficit</td>
<td>Normal pH: 16</td>
<td>3rd quadrant</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Increased pH: 12</td>
<td>3rd quadrant</td>
<td>28</td>
</tr>
<tr>
<td>Respiratory alkalosis and increased base excess</td>
<td>Increased pH: 2</td>
<td>2nd quadrant</td>
<td>2</td>
</tr>
</tbody>
</table>

Graph 1: Relationship between pCO$_2$ and (HCO$_3$ – standard HCO$_3$)

Graph 2: Relationship between pCO$_2$ and ((HCO$_3$ – standard HCO$_3$)/H$_2$CO$_3$)
The correlation between pCO₂ and (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ is clearly shown in Graphs 1 and 2 respectively. From that, it is very clear that as the pCO₂ decreases, the ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ also decreases and as the pCO₂ increases, the ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ also increases and thereafter, the curve flattens. At pCO₂ of 40 mm Hg ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ is zero because the difference between bicarbonate and standard bicarbonate value is zero (HCO₃⁻ – standard HCO₃⁻ is zero).4-6

All 120 samples were classified into various acid–base disturbances and the results are tabulated in Table 1. The normal range for standard base excess is ±2 mmol/L. If the value is >2 mmol/L, then it denotes metabolic alkalosis and if the value is <−2 mmol/L, then it denotes metabolic acidosis (base deficit). In respiratory acidosis (due to hyperventilation), pCO₂ retention occurs and in respiratory alkalosis (due to hyperventilation), the pCO₂ value is decreased. The ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ changes in respiratory disorders and also in metabolic acid–base disturbances associated with respiratory compensations.4-6

The ratio (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ is greater positive for respiratory acidosis and greater negative for respiratory alkalosis.4-6

A new graphical tool is developed for ABG interpretation using standard base excess and the ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ values. It contains four quadrants. In the x-axis, standard base excess values were taken and in the y-axis, ratio of (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃ values was taken to analyze the various acid–base disturbances which is clearly shown in the four-quadrant (Graph 3).

In the 1st quadrant (both x- and y-axes are positive), if the plotted area is toward the x-axis, then it represents metabolic alkalosis and if the area is toward the y-axis, then it represents respiratory acidosis. The plotted area in between and higher may represent combined acid–base disturbances (metabolic alkalosis and respiratory acidosis). The combined acid–base disturbances may be due to compensatory mechanism or mixed acid–base disorders.

In the 2nd quadrant (the x-axis is positive and the y-axis negative), if the plotted area is toward the y-axis, then it represents respiratory alkalosis and if the area is in between and lower, then it may represent combined acid–base disturbances (metabolic alkalosis and respiratory alkalosis).

In the 3rd quadrant (both x- and y-axes are negative), if the plotted area is toward the x-axis, then it represents metabolic acidosis and if the area is in between and lower, then it represents both metabolic acidosis and respiratory alkalosis.

In the 4th quadrant (the x-axis is negative and the y-axis is positive), if the area is toward the y-axis, then it represents respiratory acidosis and if the area is in between and higher, then it may represent both metabolic acidosis and respiratory acidosis.

The acid–base disorders can be classified and plotted in the four-quadrant graph by using the values of standard base excess and the ratio (HCO₃⁻ – standard HCO₃⁻)/H₂CO₃. Each acid–base disorders will occupy any of the four quadrants and the normal ABG analysis reports will be seen around the center of the graph.

ABG interpretation is very essential for critically ill patients. Immediate analysis, interpretation, and prompt treatment may reduce the morbidity and mortality of the patients. Arterial blood gas reports should be interpreted with clinical correlation. This newer graphical tool clearly demonstrates that the different acid–base disorders in a four-quadrant graph method may provide a rough guide to interpret the results quickly and easily. The current research study tries to emphasize the clinical significance of this newer diagnostic tool, which, used along with other ABG parameters and proper clinical correlation, may help in better interpretation of ABG reports.
CONCLUSION

Arterial blood gas analysis and interpretation is sometimes challenging, especially for combined acid–base disturbances. A newer graphical tool developed using standard base excess and the ratio of \((\text{HCO}_3^- - \text{standard HCO}_3^-)/\text{H}_2\text{CO}_3\) may help in easier and quicker interpretation of ABG reports. This simple four-quadrant graph method may provide a rough guide for ABG interpretation, which, when applied at the appropriate time, results in timely management.

REFERENCES